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I. Introduction

A solar flare is an intense burst of radiation, across the entire electromagnetic (EM) 

spectrum, that results from the release of magnetic energy from highly concentrated 

magnetic fields associated with active regions (ARs) on the Sun’s surface. Solar flares are 

classified based on their peak flux in the soft x-ray wavelength range of 1 – 8 Å (see Table 

1). A typical flare will release approximately 1022 joules of energy, while a strong flare will 

release approximately 1025 joules, equivalent to 2.4 x 1015 tons of TNT. The energy 

released by a solar flare can result in direct plasma heating, produce strong mass motions, 

accelerate particles, and produce magnetohydrodynamic (MHD) waves that are believed 

to heat the solar corona and accelerate the solar wind (Antiochos and DeVore, 2008). 

Table 1. Solar Flare Classifications 

Flare Class Peak Flux in wavelengths 1 - 8 Å, I 
(W/m2) 

A 10-8 ≤ I < 10-7

B 10-7 ≤ I < 10-6

C 10-6 ≤ I < 10-5

M 10-5 ≤ I < 10-4

X 10-4 ≤ I

Space weather – i.e., solar flares, coronal mass ejections (CMEs), geomagnetic 

storms, etc. – is of rising importance as a severe risk recognized by governmental agencies, 

including the Department of Defense (DoD) and corporations, as humankind’s utilization 

of/dependence on technology continues to grow (Eastwood et al., 2017). The accelerated, 
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energetic particles and increased EM radiation from solar flares create disturbances in the 

Earth’s magnetic and electric fields, as well as its atmosphere, which can result in degraded 

performance or damage of equipment, both on Earth and in the space environment. 

Specifically, induced currents associated with CMEs may damage physical infrastructure 

(particularly transformers); the heating and resulting expansion of the atmosphere by flares 

will increase drag on satellites, leading to greater expenditure of fuel to correct course; and 

surface or internal dielectric charging of satellites by energetic particles can cause 

intermittent anomalous behavior or complete satellite failure (Eastwood et al., 2017). 

Additionally, increases in the ionospheric ionization – called Sudden Ionospheric 

Disturbances (SIDs) – causes scintillation or complete absorption of high frequency (HF) 

radio waves that leads to degradation or loss of satellite communication. It is estimated that 

a solar flare and associated solar radiation storm of similar magnitude to the Carrington 

Event of 1859 would cause such catastrophic damage that it would take approximately 4 – 

10 years to recover (Eastwood et al., 2017). A separate assessment of a Carrington level 

event estimated a total economic cost of $0.6 – 2.6 trillion in the United States alone, 

assuming power outages lasting one to two years (Eastwood et al., 2017). More important 

than the threat solar flares post to equipment is the threat to personnel in high altitude 

aircraft and spacecraft that would be exposed to the enhanced levels of radiation. Reduced 

flight times at high altitudes would be required in order to avoid reaching radiation dose 

limits, which would have a huge operational impact in the form of delays and increased 

fuel use from rerouting flights.  

 Given the potentially severe impacts to personnel and equipment from the effects 

of solar flares, and the fact that these effects only take eight minutes to reach the Earth 
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following a flare occurrence (i.e., there is no detection lead time), it is critical that solar 

flare events be forecasted. Due to the limited understanding of the underlying physical 

processes of these events, forecasting methods continue to rely on climatological patterns 

and rules of thumb, e.g., flare persistence which states that an AR that has flared recently 

is likely to flare again (Sawyer et al., 1986). McIntosh (1990) created probabilistic forecasts 

for flares by applying Poisson statistics to observations of flare production rates for 

different classes of active regions. Forecasts published today – including those from the 

Space Weather Prediction Center (SWPC) – use this approach as a basis (Leka et al., 2018). 

Several studies that have utilized various statistical methods and machine-

learning/discriminant analysis algorithms for flare forecasting (Bobra and Couvidat, 2015; 

Leka et al., 2018; Mason and Hoeksema, 2010) found that such methods produced little to 

no improvement in forecasting ability over climatology. In fact, the results of a workshop 

held in Boulder, CO in 2009 – where the performance of 11 different statistical flare 

forecasting methods/algorithms was compared on a common dataset from the Solar and 

Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) – showed that (1) no 

one method clearly outperformed all others, and (2) no method was substantially better 

than climatological forecasts (Barnes et al., 2016). Improvement of flare forecasting ability 

will only be achieved with a better understanding of the trigger mechanism associated with 

solar flare occurrence. 

 Magnetic reconnection – i.e., the joining of antiparallel magnetic field lines – is 

widely believed to be such a trigger mechanism, responsible for the eruptive release of 

energy involved with solar flares. The general two-dimensional setup for magnetic 

reconnection can be seen in Figure 1, where antiparallel magnetic fields that lie on either 
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side of a resistive current sheet diffuse into the sheet, cancelling each other out, and 

converting the magnetic energy into kinetic/thermal energy (Russell et al., 2016).  

Figure 1. General setup for magnetic reconnection (Left image adapted from Russell 
et al., 2016; right image courtesy of NASA). Arrowed lines are the magnetic field (B) 
lines, E is the electric field, j is current density, and u is the plasma velocity. 

The outline of the solar flare process involving reconnection is (Antiochos and DeVore, 

2008; Priest and Forbes, 2002): 

(1) A sheared and stressed magnetic field slowly emerges from below the

photosphere and rises into a coronal arcade containing a prominence, building

up free energy in the corona.
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(2) Magnetic reconnection acts as a triggering mechanism that destroys the

magnetic equilibrium of the corona, leading to an explosive instability.

(3) The magnetic field erupts outward, ejecting and accelerating the plasma.

(4) Further reconnection closes the field back down to a less stressed state, and

magnetic energy is converted, resulting in the heating of the plasma and an

intense x-ray burst.

Essentially, once the magnetic field over an AR becomes sheared and twisted to a certain 

point, magnetic reconnection “turns on” to alleviate the magnetic stress, causing the initial 

eruption and loss of equilibrium of the field; however, continued reconnection of the field 

lines rapidly restores equilibrium and brings the field into a less stressed configuration. 

Models of magnetic reconnection still do not accurately predict the rate at which 

reconnection occurs during a solar flare event. One of the original models, the Sweet-

Parker Model, employs a current sheet that stretches the entire length of the boundary 

between antiparallel magnetic fields, with field lines diffusing into the sheet at the same 

rate they diffuse out. However, the resulting rate of reconnection this model predicts is far 

too slow to represent a solar flare (Priest and Forbes, 2002). The Petschek model utilizes a 

smaller current sheet that divides into two pairs of slow-mode shocks, resulting in 

reconnection rates that accurately represent chromospheric reconnection (Chae et al., 2002; 

Priest and Forbes, 2002). Antiochos and DeVore (2008) describe the tether-cutting and 

breakout models which focus on redistributing the shear within a sheared region of the 

magnetic field so that it is concentrated on the outermost field lines at the edge of the 

sheared region. If the transfer of the shear is sufficiently rapid, then the eruptive behavior 

of a solar flare should occur. 
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To continue the improvement of magnetic reconnection models – and ultimately 

the ability to forecast solar flares – requires further analysis of how the magnetic field over 

an AR behaves during a solar flare event. Although the magnetic reconnection associated 

with solar flares occurs high in the solar atmosphere, because the capability of direct 

coronal magnetic field measurements does not exist, we rely on measurements of the 

photospheric magnetic field. However, photospheric – and even subphotospheric – motions 

drive the twisting and shearing of coronal magnetic structures. 

The purpose of this study is to detect potential magnetic reconnection signatures 

associated with solar flare occurrence within the photospheric magnetic field, in order to 

better understand the underlying physics principles involved with such phenomenon. The 

work done here expands upon that of Whitney et al. (2020), the basis of which originated 

from a case study of the Labor Day 2017 storms performed by Loper (2018). Specifically, 

an analysis of photospheric magnetic field data during solar flare events was used to 

identify and compare the trends of differing flare classes for varying time intervals leading 

up to an event, as well as the trends of flares that occur with and without a precursor flare. 

6
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II. Background

2.1. Previous Research 

Whitney (2020) performed an epoch analysis of full vector-field component data 

of the photospheric magnetic field during a six-hour window around solar flare events – 

two hours prior to flare occurrence, four hours after – in order to identify and compare 

trends in the different categories of flare strengths, as well as discern potential signatures 

of magnetic reconnection. The study utilized data from the Solar Dynamics Observatory 

(SDO) Helioseismic and Magnetic Imager (HMI) and Space Weather HMI Active Region 

Patches (SHARPs) for a near decade-long period from May 2010 through September 2019, 

and found that a rise in both size and flux levels of small and moderate flares indicates that 

ARs may still be growing in size and strength while producing flares, with the exception 

of X-class flares that showed opposite trends, suggesting that they have reached maximum 

size and strength. Additionally, the helicity and twist parameters showed greatest 

variability throughout the flare duration, and a sudden increase in these parameters 

following M- and X-class flares implies an increase in the complexity of the magnetic field 

configuration. Ultimately, for the purposes of solar flare forecasting, few of the magnetic 

parameters showed strong patterns or distinct signatures. 

Mason and Hoeksema (2010) also performed an epoch analysis with a dataset of 

similar size to find statistical relationships between the solar magnetic field and flares, but 

their study utilized data from the SOHO/MDI. The data consisted of full-disk line-of-sight 

(LoS) magnetograms on a 96-minute cadence for 1075 ARs and over 6000 flares (B-class 

or greater) spanning the period from 15 April 1996 to 31 December 2008. Based on their 
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predictive success in previous studies, the magnetic parameters investigated were the total 

unsigned magnetic flux, primary inversion line (PIL) length, effective separation (i.e. the 

effective distance between the two bipolar regions of an AR), and gradient-weighted 

inversion-line length (GWILL). Results showed that of the four parameters, the GWILL 

was the most associated with flaring, but is still a poor predictor of flares in real-time. 

However, there is still hope yet as it was determined that a superposed epoch analysis does 

have the capability to pick out weak systematic responses indicating flare associated 

signatures. 

Compared to Mason and Hoeksema (2010) and Whitney (2020), the majority of 

studies that utilize vector magnetic field data to investigate the relationship between the 

solar magnetic field and flare occurrence focus on smaller datasets and case studies. This 

is partially due to the fact that the HMI has only just recently been operational for a full 

decade. For example, Bobra and Couvidat (2015) attempted to forecast M- and X-class 

flares with a machine-learning algorithm using HMI vector magnetic field data. The 

catalog of data used to train the algorithm spanned from May 2010 to May 2014, and 

consisted of 303 positive examples – defined as an AR that flares within 24 hours after a 

sample time – and 5000 randomly selected negative examples – defined as an AR that does 

not flare within ±48 hours from the sample time. Results showed that the four magnetic 

parameters with the highest feature score (i.e. a measure of relevancy or how discriminative 

a parameter is) were the total unsigned current helicity, total magnitude of the Lorentz 

force, total photospheric magnetic free energy density, and total unsigned vertical current. 

Additionally, Bobra and Couvidat (2015) determined that the predictive capability of the 
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algorithm using only these four parameters was approximately the same as that of the top 

13 parameters. 

Kazachenko et al. (2017) compared the Geostationary Operational Environmental 

Satellite (GOES) peak X-ray flux with corresponding AR and flare ribbon – enhancements 

in Hα and 1600 Å emissions associated with the footprints of newly reconnected flux tubes 

on the solar surface – properties. Their database extended from April 2010 to April 2016 

and consisted of 3137 solar flare events of magnitude C1.0 or stronger within 45° from the 

central meridian, observed by SDO. It was found that the peak X-ray flux was more 

strongly correlated with the flare ribbon reconnection flux, flare ribbon area, and the 

fraction of AR flux that undergoes reconnection than with the AR unsigned magnetic flux. 

This indicates that the strength of a solar flare is driven more by the magnetic flux 

associated with the reconnection specifically than the flux of the entire AR. 

Leka and Barnes (2007) applied statistical tests based on linear discriminant 

analysis to 29 different photospheric magnetic parameters in order to identify flare 

producing properties of an AR. The data used in their study were University of Hawaii 

Imaging Vector Magnetograph daily magnetograms obtained between 2001 and 2004, 

comprising 496 numbered ARs. It was found that significant excess energy, large vertical 

currents, and considerable current helicity are associated with large ARs, as measured by 

the total flux. Additionally, the parameters with the highest correlation with flare 

production were totals of various quantities over the entire AR, complemented by measures 

of shear; the parameter most correlated was the total excess photospheric magnetic energy. 

Ultimately it was determined that no parameters made a strong distinction between flare 

producing and quiet ARs. However, Leka and Barnes (2007) noted that inclusion of the 
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evolution of the photospheric field or the coronal magnetic field could lead to better 

distinguishing of flare producing ARs. 

 In a study by Priest and Forbes (2002) it was determined that the time required for 

enough energy to build up in the magnetic field over an AR for a large flare to occur is 

approximately one day, whereas the time required for a moderate flare is only a couple 

hours. From this came one of the motives of the present study to compare the trends in 

magnetic parameters during varying time intervals leading up to a flare occurrence. The 

idea being that during the time of energy buildup (which increases with increasing flare 

strength) and flare occurrence, common trends in the magnetic parameters would be seen 

for the varying flare classes – i.e., the trends for X-class flares during a 24-hour interval 

would be roughly the same as those for M-class flares during a 12-hour interval, C-class 

flares during a six-hour interval, and B-class flares during a three-hour interval. 

 Another case study of the Labor Day 2017 storms performed by Verma (2018) 

investigated the morphological, magnetic, and horizontal flow properties associated with 

two specific X-class flares (X2.2 and X9.3) that occurred consecutively within the same 

AR on 6 September 2017. Utilizing continuum images, LOS and vector magnetograms, 

and 1600 Å UV images during a seven-hour time period around the flares, it was 

determined that the X2.2 flare acted as a precursor that set the stage for the stronger, more 

extended X9.3 flare. Specifically, flow patterns along the PIL that resulted from the X2.2 

flare contributed to more strongly sheared magnetic field structures across the AR that led 

to the X9.3 flare. This idea of how the explosive motions of a flare can result in greater 

shearing and potential for loss of equilibrium over other portions of an AR, leading to a 

10
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stronger flare, was investigated further in the present study by comparing the trends of 

various magnetic parameters during flares that occur with and without a precursor. 

 Most of the studies that investigate the nature and effects of precursor flares are 

either case studies – looking at a few major flares with a couple precursors – or focus on 

the changes in an AR within a one-hour time interval before the major flare. Very few 

studies have looked at a more comprehensive and longer evolution of precursor activity 

leading up to major flares. One such study, performed by Gyenge et al. (2016), investigated 

the spatio-temporal distribution of precursor flares during a 24-hour interval preceding M- 

and X-class flares. The location of precursors could indicate the section of an AR where 

the magnetic field is progressively altered by successive reconnection events; the temporal 

distribution could reveal the characteristic time at which the destabilization of the field 

leading to a major event starts (Gyenge et al., 2016). The study considered only M- and X-

class flares that were observed simultaneously by the GOES and Reuven Ramaty High 

Energy Solar Spectroscopic Imager (RHESSI) satellites, while the dataset for precursor 

flares came solely from RHESSI. With this, a total of 49 X-class flares (with 1001 

associated precursors) and 315 M-class flares (with 3151 associated precursors) that 

occurred between 2002-2014 were examined. Gyenge et al. (2016) found that 18-24 hours 

prior to the major flare, the precursors of X-class flares followed a double peaked spatial 

distribution, while those of the M-class flares showed a lognormal distribution; however, 

six hours prior to the major flare, both classes showed the lognormal distribution. This 

supports the idea that the spatial extent of the reorganization of the magnetic field of an 

AR is larger for X-class flares than M-class flares. The temporal variation of precursors 

resembled a bell-shaped curve for both flare classes, with increased precursor activity 

11
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lasting 20-24 hours in both cases. Additionally, the aforementioned characteristic time was 

estimated to be approximately 12-15 hours before X-class flares and approximately 7-10 

hours before M-class flares. 

2.2. HMI Data 

The HMI is a joint project between the Stanford University Hansen Experimental 

Physics Laboratory, the High Altitude Observatory (HAO), the Lockheed Martin Solar and 

Astrophysics Laboratory (LMSAL), and an additional 21 institutions, that is ultimately a 

part of National Aeronautics and Space Administration (NASA)’s Living With a Star 

(LWS) program (Scherrer et al., 2012). Since 1 May 2010, it has been operational onboard 

NASA’s SDO, and is the first instrument to continuously map the photospheric vector 

magnetic field across the full solar disk from space with high cadence (Bobra et al., 2014). 

The intent of the HMI is to study the dynamics of the convection zone – the layer just 

below the photosphere – and the solar dynamo; the genesis and evolution of various solar 

activity features; connections between the Sun’s internal processes and dynamics within 

the corona and heliosphere; sources and drivers of magnetic activity; and precursors of 

solar activity/disturbances to better space weather forecasting ability (Scherrer et al., 2012). 

For the most part, the instrument is based off of the highly successful MDI, with some 

significant improvements including the capability to observe full Stokes vector, full-disk 

filtergram data, two cameras instead of one, better temporal coverage and spatial 

resolution, and increased redundancy (Schou et al., 2012). HMI data can be obtained from 

the Joint Science Operations Center (JSOC) at Stanford University (JSOC, 2020b), and 
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greater detail regarding instrument description, calibration, and data handling can be found 

in Schou et al. (2012). 

2.2.1. HARPs 

Utilizing photospheric full-disk LoS magnetogram images produced on a 720 

second (12 minute) cadence and continuum intensity images, an automated code identifies 

and tracks HMI Active Region Patches (HARPs) – i.e., an enduring, coherent magnetic 

structure whose size is on the scale of an AR (Hoeksema et al., 2014; JSOC, 2020a). HARP 

data files include both the HARP number and National Oceanic and Atmospheric 

Administration (NOAA) AR number, which may coincide as a single region or multiple 

NOAA ARs may be associated with a single HARP. Detailed steps on how HARPs are 

identified can be found in Hoeksema et al. (2014). There are two types of HARPs (JSOC, 

2020c): 

(1) Near-real time (NRT) HARPs, which are calculated as soon as possible and

whose heliographic bounding box for the AR can change with each 12 minute

time step

(2) Definitive HARPs, which are defined either after an AR has traversed the face

of the solar disk or five days after the AR has decayed (whichever is first), and

whose heliographic bounding box are constant over time.

Near real time HARP information is most useful for space weather forecasting; however, 

the need for rapid processing results in a loss of some of the convenient features of the 

definitive HARPs, such as constant size, known ancillary information like NOAA AR 

numbers, and inclusion of data before the first emergence of flux (JSOC, 2020c).  

13
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2.2.2. SHARPs 

JSOC also produces the SHARP data series, which contains various space weather 

parameters/indices calculated from the photospheric vector magnetogram data of AR 

patches every 12 minutes; only data that are both above a high-confidence threshold and 

within a HARP contribute to the calculation of SHARP parameters (JSOC, 2020c; Bobra 

et al., 2014). The SHARP parameters, along with their descriptions and formulas, utilized 

in this study are summarized in Table 2. With further development of the SHARP database, 

additional parameters will become available, including models of the coronal field and 

characterizations of the magnetic-inversion lines (Bobra et al., 2014).  

As with the HARP data series, there are definitive SHARPs – better calibrated and 

most complete data, with an approximately 35-day delay in availability – and NRT 

SHARPs – quick-look data, available within 3 hours. In addition to the difference in the 

HARP bounding box as described in the previous section, the input data for NRT and 

definitive SHARPs differ in completeness and calibration, with calibrations and 

corrections to the NRT data relying on predicted conditions (Bobra et al., 2014; Hoeksema 

et al., 2014). Furthermore, the annealing parameters for disambiguation are adjusted to 

enable faster computation for NRT processing (Bobra et al., 2014). Since the present study 

was focused on an analysis of magnetic parameters during flare events, as opposed to 

specifically forecasting flare occurrence, the definitive SHARP data series was used 

instead of the NRT series. 

14
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Table 2. SHARP parameters, descriptions, and calculations (From Whitney, 2020). 
All summations are over the total number of pixels, N. 
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2.3. Flare Data/Statistics 

The Geostationary Operational Environmental Satellite (GOES) utilizes a detection 

algorithm to automatically identify various solar events, including solar flares. By 

comparing current data to three minutes’ worth of previous observations, the algorithm can 

calculate the slope of the x-ray flux and determine the beginning, maximum, and end times 

of the solar events (SWPC, 2009). NOAA’s Space Weather Prediction Center (SWPC) 

maintains an archive of all solar events and associated data, dating back to 1966 (SWPC, 

2019). 

The present study utilizes the same dataset retrieved from SWPC by Whitney 

(2020), with solar flare event and HMI data spanning from May 2010 to September 2019. 

The reason this same dataset was used is that solar activity was relatively low following 

September 2019, with only 38 B-class flares, three C-class flares, one M-class flares, and 

zero X-class flares occurring from October 2019 to September 2020. Statistically, the 

inclusion of these flares would have a negligible effect on the results of the study, thus it 

was easier to utilize the dataset that was already in a ready-to-use format. Further detail on 

the retrieval and formatting of the dataset can be found in sections 2.3 and 3.2 of Whitney 

(2020). Of note, the solar flare times are in Coordinated Universal Time (UTC), while 

SHARP data is in International Atomic Time (TAI); UTC and TAI only differ by 37 

seconds (approximately 5% of the HMI observation cadence), thus the difference in time 

scales can be ignored (Whitney, 2020). 

The total number of solar flares within the dataset was 13,507, the overwhelming 

majority of which were lower class flares (B- and C-class). A detailed breakdown of the 
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number of flares of each class and the occurrence of a precursor within a given time interval 

is provided in Table 3. It should be noted that A-class flares were not included in the 

analysis performed due to their minimal effects, as well as the fact that they are often 

washed out by the background x-ray flux. This washing out can also occur for lower 

magnitude B-class flares during solar max or periods with a high frequency of flares when 

the background x-ray flux is elevated, thus the total number of B-class flares in Table 3 is 

likely not the actual number that occurred during the time period considered (Whitney, 

2020). 

For the purposes of this study, a precursor flare was defined as a flare that occurs 

within the same AR and a given timeframe prior to a flare of equal or larger magnitude. A 

flare without a precursor was defined as one that had no other flare occur within the given 

timeframe prior to occurrence. With this, the analysis of flares with and without precursors 

did not include flares that occurred following a flare of larger magnitude within a given 

timeframe. Thus, the percentages of flares with and without precursors for each time 

interval in Table 3 do not necessarily add up to 100. A greater number of such cases 

occurred within the longer time intervals, leading to a drop in the combined percentage of 

flares with and without a precursor for increasing time intervals (Table 3). This percentage 

drop is greater for lower magnitude flares than larger magnitude; X-class flares had no 

percentage drop with increasing time interval, while B-class flares had the greatest 

percentage drop. 

The temporal distribution of precursor flares within a 24-hour interval for each flare 

class can be seen in Figure 2. The B-, C-, and M-class flares all show a general increase in 

precursor activity over the 24 hours preceding occurrence. As would be expected, the B- 
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and C-class flares show the most significant increase in precursor activity starting 

approximately six to eight hours prior to occurrence. This is due to the fact that more often 

than not a B- or C-class flare is not the dominant flare for an extended period of time. 

Precursor activity ahead of M-class flares start to significantly increase approximately 8-

12 hours prior to occurrence, similar to what Gyenge et al. (2016) found. 

Table 3. Distribution of flare classes in the dataset. 

Flare Class A B C M X Total 

Number Overall 61 5493 7210 697 46 13507 

Percentage Overall 0.45% 40.67% 53.38% 5.16% 0.34% 100% 

Percentage of flare class with a 
Precursor within a 3-hour interval 0% 12.87% 22.16% 49.79% 54.35% 19.82% 

Percentage of flare class without a 
Precursor within a 3-hour interval 8.20% 48.46% 49.97% 40.32% 41.30% 48.64% 

Percentage of flare class with a 
Precursor within a 6-hour interval 0% 16.75% 29.10% 62.98% 67.39% 25.82% 

Percentage of flare class without a 
Precursor within a 6-hour interval 8.20% 37.41% 36.27% 24.10% 28.26% 35.95% 

Percentage of flare class with a 
Precursor within a 12-hour interval 0% 20.15% 35.10% 72.02% 82.61% 30.93% 

Percentage of flare class without a 
Precursor within a 12-hour interval 8.20% 27.49% 24.79% 14.06% 13.04% 25.22% 

Percentage of flare class with a 
Precursor within a 24-hour interval 0% 23.03% 39.68% 77.04% 89.13% 34.83% 

Percentage of flare class without a 
Precursor within a 24-hour interval 4.92% 19.28% 16.64% 8.47% 6.52% 17.21% 

Very different to the other flare classes, as well as the findings of Gyenge et al. 

(2016), precursor activity ahead of the X-class flares showed no obvious trend, with 

activity fluctuating throughout the 24 hours. The difference between the X-class flare 
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precursor activity in Figure 2 and the results of Gyenge et al. (2016) – which is the similar 

increasing trend seen with the other classes – could be the result of different data collection. 

The present study utilized GOES flare data solely, whereas Gyenge et al. (2016) utilized 

GOES data for the “major” flares and RHESSI data for the associated precursors, which is 

more sensitive to the smaller magnitude flares and microflares. Thus, while there were only 

269 associated precursors within a 24-hour interval ahead of the 46 X-class flares in this 

study, there were 1001 precursors ahead of the 49 X-class flares in Gyenge et al. (2016). 

Additionally, missing data for the NOAA AR number within the GOES dataset used in the 

present study (see Methodology) resulted in 62 potential precursors for X-class flares not 

being considered – a decent amount relative to the 269 confirmed precursors. Of these 62 

potential precursors, 38 (or approximately 61%) occurred within a 12-hour interval ahead 

of the X-class flares. 

Figure 2. Temporal distribution of precursor flares. 
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III. Methodology

As previously mentioned, the dataset used in this study was the same as that used 

by Whitney et al. (2020), which included nearly all of Solar Cycle 24. The dataset consisted 

of solar flare event data from SWPC (start time, max time, end time, flare class/magnitude, 

and NOAA AR number) and HMI data from JSOC (date/time, longitude, HARP number, 

associated NOAA AR number, and all SHARP parameters), for the time period of 1 May 

2010 to 4 September 2019. Connection of the solar flare event data and HMI data was 

established by associating the start time of each flare to the nearest HARP data time. Flare 

start times were used instead of flare max times because (1) the data collected would be 

affected by the occurrence and progression of the flare at max time, and (2) the time 

between the flare start and maximum is not constant, making it impossible to label the data 

prior to the flare max as part of the flare itself or part of the buildup (Whitney et al., 2020). 

3.1. Data Filters 

Only flares with an associated NOAA AR were considered in this study since a 

precursor flare was defined as a flare that occurs within the same AR and a given timeframe 

prior to a flare of equal or larger magnitude. This meant nearly 16% of the dataset (2,085 

out of the total 13,507 flares) was filtered out. Additionally, flares that occurred at 

longitudes greater than ±70° were filtered out to avoid data affected by solar limb effects 

and/or from incomplete HARPs as they rotate onto and off the solar disk. As a result of the 

optical depth of the plasma in the solar atmosphere and the geometry of the LoS, satellites 

survey only the upper reaches of the photosphere near the solar limb, while surveying the 
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base of the photosphere near the center of the solar disk. This, along with a decrease in 

temperature with height in the photosphere, leads to the limb darkening that can be seen in 

solar imagery (see Figure 3). Furthermore, for features near the solar limb the LoS looks 

across instead of direct, which leads to the LoS magnetic fields measured by the HMI to 

be predominantly horizontal rather than radial (Whitney et al., 2020). 

Figure 3. SDO/HMI Intensitygram from 9 Dec 2020 (retrieved from JSOC, 2020b). 

A longitude of ±70° was chosen as the threshold for this study in part because 

beyond 70° the signal-to-noise ratio in the SHARP parameters significantly increases 

(Bobra et al., 2014). In addition, Whitney et al. (2020) found no significant differences 

between a 70° threshold and a 45° threshold – used in other studies such as Kazachenko et 
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al. (2014) to eliminate data that is primarily transverse instead of radial. Data plotted with 

the two different thresholds showed fluctuations within a few percent, indicating that “the 

SHARP calculations do make corrections for longitude in the Stokes parameters” (Whitney 

et al., 2020). 

To investigate the potential time dependence of the trends in magnetic parameters 

for varying flare classes, data for the following time intervals around each solar flare 

occurrence was used in the analysis: 

x 3-hour interval, defined as 3 hours before occurrence through 6 hours after

x 6-hour interval, defined as 6 hours before occurrence through 6 hours after

x 12-hour interval, defined as 12 hours before occurrence through 6 hours after

x 24-hour interval, defined as 24 hours before occurrence through 6 hours after.

To ensure data would not overlap, flares that occurred within the different epoch intervals 

of each other were filtered out, with the largest magnitude flare remaining. The larger flares 

were kept due to the overwhelming number of smaller flares in the dataset, thus 

representation of flare classes/magnitudes would be slightly more balanced. Additional 

filtering was done to separate solar flare events based on precursor occurrence, in order to 

compare the trends in magnetic parameters for flares with and without a precursor flare. 

With the data filters applied, 12 different subsets of data were analyzed. For each 

of the epoch intervals listed above, there were three separate subsets: 

1. General subset, which consisted of all categories of flares – i.e. flares with a

precursor, flares without a precursor, and flares that occurred after a larger

magnitude flare
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2. Precursor subset, which consisted only of flares that had a precursor flare occur

within the given timeframe leading up to occurrence

3. No precursor subset, which consisted only of flares that had no other flare occur

within the given timeframe leading up to occurrence.

3.2. Analysis 

As indicated earlier, flare occurrence was defined by the flare start time as retrieved 

from the SWPC archive (SWPC, 2019). For each flare within a particular subset, the start 

time was associated with the nearest HARP data time, and from that, all HMI data within 

the particular epoch interval of the subset was gathered. For example, for a flare in one of 

the 3-hour interval subsets, all HMI data within three hours before the HARP data time 

nearest the flare start time through six hours after that time was gathered. Given the 

SDO/HMI 12-minute cadence for data collection, this meant that for each flare in a 3-hour 

interval subset there were 45 data points; for each flare in a 6-hour interval subset there 

were 60 data points; for each flare in a 12-hour interval subset there were 90 data points; 

and for each flare in a 24-hour interval subset there were 150 data points. To effectively 

compare the solar flare events and changes relative to flare occurrence, all SHARP 

parameters gathered for a particular flare were normalized to the value at the flare’s start 

time. Additionally, within each subset, the averages of each parameter for each flare class 

and magnitude at every time step were calculated. 

Once all data had been gathered and normalized for each flare in the different 

subsets, a mask was applied to each subset to remove outliers. An outlier was defined as a 

flare that had any parameter with a value greater than three standard deviations from the 
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average value at any time within the particular epoch interval. The normalized standard 

deviation limits for each parameter and data subset can be found in Appendix A. Removal 

of outliers was necessary to accurately analyze the trends of the magnetic parameters 

during solar flare events, as results were highly skewed when these flares were included. 

Following the removal of outliers, the averages were recalculated. With the data filters and 

outlier removal masks applied, the number of flares considered in the analysis for each 

subset are displayed in Tables 4, 5, and 6.  

For plotting purposes, time arrays for each epoch interval were created with all 

flares set to start at an arbitrary time of 12:00. This ensured all flare occurrences lined up 

and SHARP parameters converged to a value of 1.00 at 12:00, allowing for trends prior to 

and following flare occurrence to be more easily discernable. Just as Whitney et al. (2020) 

found, because of the sizeable amount of flares within the different subsets, when all were 

presented on a single plot, the plots became overcrowded and trends were difficult to 

determine. For this reason, the data subsets were summarized by plotting the flare averages 

instead. 

3.3. Limitations 

Given the vast amount of data involved – 13,507 solar flares and 2,669,718 HMI 

data points – there was, of course, missing data within the SWPC and HMI datasets. 

Specifically, across all the SHARP parameters, the average number of data points with 

missing values was 20,765, with a maximum number of 35,378. As mentioned before, 

nearly 16% of the solar flares had missing NOAA AR numbers. 
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Though the HMI is highly beneficial, being the first instrument to continuously map 

the photospheric vector magnetic field across the full solar disk (Bobra et al., 2014), its 12-

minute cadence between observations does bring about some limitations. First off, for time 

scales less than 12 minutes, any changes in the photospheric magnetic field are lost. 

Furthermore, if a flare occurs during the time between observations, “flare times may be 

incorrect by as many as six minutes, [and] the nearest observation time may be after the 

start time of the flare, thus resulting in…contamination of the data due to the ongoing flare” 

(Whitney et al., 2020). 

Lastly, as noted in other studies, photospheric magnetic field data may not be 

sufficient enough to fully understand the physics involved with magnetic reconnection 

since reconnection takes place higher in the solar atmosphere. Though the photospheric 

and chromospheric/coronal magnetic fields may be connected, direct measurements of the 

chromospheric and coronal magnetic fields would be able to provide a fuller depiction of 

magnetic reconnection.  Moreover, the opacity of the solar atmosphere can be altered 

during a flare event, affecting the accuracy of the photospheric observations during and 

immediately following the event (Whitney et al., 2020). 
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Table 4.  Distribution of flare classes in the General subsets following data filters & 
outlier removal (Adapted from Whitney, 2020). 

Epoch 
Interval 

Flare 
Class 

Number of Flares 
Considered 

Comparison to 
Total Considered in 

Epoch Interval 

Comparison to 
Class Total in Full 
Dataset (Table 3, 

Column 2) 

3-hour 

B 1373 35.214 % 24.995 % 
C 2116 54.270 % 29.348 % 
M 379 9.720 % 54.375 % 
X 31 0.796 % 67.739 % 

Total 3899 100 % 28.867 % 

6-hour 

B 865 34.353 % 15.747 % 
C 1305 51.827 % 18.100 % 
M 318 12.629 % 45.624 % 
X 30 1.191 % 65.217 % 

Total 2518 100 % 18.642 % 

12-hour 

B 452 30.706 % 8.229 % 
C 763 51.834 % 10.583 % 
M 228 15.489 % 32.712 % 
X 29 1.971 % 63.043 % 

Total 1472 100 % 10.898 % 

24-hour 

B 211 26.675 % 3.841 % 
C 388 49.052 % 5.381 % 
M 168 21.239 % 24.103 % 
X 24 3.034 % 52.174 % 

Total 791 100 % 5.856 % 
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Table 5.  Distribution of flare classes in the Precursor subsets following data filters & 
outlier removal (Adapted from Whitney, 2020). 
 

Epoch 
Interval 

Flare 
Class 

Number of 
Flares 

Considered 

Comparison to 
Total 

Considered in 
Epoch Interval 

Comparison to 
Class Total in Full 
Dataset (Table 3, 

Column 2) 

Comparison to 
Class Total with a 
Precursor (Table 

3, Column 3/5/7/9) 

      

3-hour 

B 295 23.338 % 5.370 % 41.726 % 

C 736 58.228 % 10.208 % 46.058 % 

M 216 17.089 % 30.990 % 62.248 % 

X 17 1.345 % 36.957 % 68.000 % 

Total 1264 100 % 9.358 % 47.217 % 
      

6-hour 

B 287 23.448 % 5.225 % 31.196 % 

C 685 55.964 % 9.500 % 32.650 % 

M 231 18.872 % 33.142 % 52.620 % 

X 21 1.716 % 45.652 % 67.742 % 

Total 1224 100 % 9.062 % 35.092 % 
      

12-hour 

B 210 21.538 % 3.823 % 18.970 % 

C 545 55.897 % 7.559 % 21.533 % 

M 199 20.410 % 28.551 % 39.641 % 

X 21 2.155 % 45.652 % 55.263 % 

Total 975 100 % 7.219 % 23.337 % 
      

24-hour 

B 122 19.709 % 2.221 % 9.644 % 

C 323 52.181 % 4.480 % 11.290 % 

M 153 24.717 % 21.951 % 28.492 % 

X 21 3.393 % 45.652 % 51.220 % 

Total 619 100 % 4.583 % 13.159 % 
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Table 6.  Distribution of flare classes in the Non-Precursor subsets following data 
filters & outlier removal (Adapted from Whitney, 2020). 
 

Epoch 
Interval 

Flare 
Class 

Number of 
Flares 

Considered 

Comparison to 
Total 

Considered in 
Epoch Interval 

Comparison to 
Class Total in Full 
Dataset (Table 3, 

Column 2) 

Comparison to 
Class Total without 
a Precursor (Table 
3, Column 4/6/8/10) 

      

3-hour 

B 1699 39.084 % 30.930 % 63.824 % 

C 2455 56.476 % 34.050 % 68.138 % 

M 178 4.095 % 25.538 % 63.345 % 

X 15 0.345 % 32.609 % 78.947 % 

Total 4347 100 % 32.183 % 66.164 % 
      

6-hour 

B 1199 40.330 % 21.828 % 58.345 % 

C 1665 56.004 % 23.093 % 63.671 % 

M 100 3.364 % 14.347 % 59.524 % 

X 9 0.302 % 19.565 % 69.231 % 

Total 2973 100 % 22.011 % 61.223 % 
      

12-hour 

B 788 41.715 % 14.346 % 52.185 % 

C 1052 55.691 % 14.591 % 58.870 % 

M 44 2.329 % 6.313 % 44.898 % 

X 5 0.265 % 10.870 % 83.333 % 

Total 1889 100 % 13.985 % 55.461 % 
      

24-hour 

B 469 42.405 % 8.538 % 44.287 % 

C 613 55.425 % 8.502 % 51.083 % 

M 22 1.989 % 3.156 % 37.288 % 

X 2 0.181 % 4.348 % 66.667 % 

Total 1106 100 % 8.188 % 47.590 % 
 

28



www.manaraa.com

IV. Results and Discussion

The limited number of X-class flares – a consequence of the nature of extreme 

events – resulted in greater variability in the data for that flare class. As a result of this 

greater variance, the trends for smaller flares are not as readily discernable. Therefore, all 

figures in this section were reproduced without the X-class flare data (see Appendix B). 

Though it was more often the case for the X-class flares, ultimately for all flare classes 

some of the SHARP data was sporadic, with no distinguishable trends. With this, the 

trends/behavior of the magnetic parameters analyzed and discussed in this section focuses 

only on those that were more consistent and discernable. Additionally, as noted in Table 6, 

the 24-hour Non-Precursor subset consisted of only two X-class flares – comprising of only 

one flare sub-classification (X1.0) – considered for the analysis, which led to extreme 

variability in the data and no discernible trends. Thus, comparison of Precursor and Non-

Precursor subsets is discussed only for the 3-, 6-, and 12-hour epoch intervals; the 24-hour 

epoch interval is only included in the discussion of the General subsets. 

The epoch analyses of the flare averages for the General subsets (Figures 4-7) can 

be found in section 4.1, where the potential time dependence with varying flare strength is 

discussed. The epoch analyses of the flare averages for the Precursor and Non-Precursor 

subsets (Table 7 and Figures 8-13) can be found in section 4.2, where the trends of SHARP 

parameters for flares with and without a precursor(s) are compared. Within the plots, flare 

occurrence (or start time) is represented by the vertical dashed line. The colored lines 

represent the average values of the different flare classes, while the thick, dashed line 

represents the average values of all flares within the subset. 

29



www.manaraa.com

4.1. General Subsets 

Comparison of the General subsets for all time intervals identified (1) the broader 

differences and (2) the potential time dependence of magnetic conditions leading up to and 

during flare events of different strengths. Regarding (1), X-class flares showed 

dissimilar/opposite trends than the B-, C-, and M-class flares for the following parameters: 

• LoS Area of Active Pixels

• Total Unsigned Flux

• Mean Vertical Current Helicity

• Characteristic Twist Parameter.

For the LoS Area of Active Pixels – a measure of AR size – the B-, C-, and M-class flares 

all show an increase before and after flare occurrence for all time intervals; X-class flares 

show a decrease before occurrence for the 3-, 6-, and 12-hour intervals, and after 

occurrence for all time intervals. This is likely because an AR has reached maximum 

growth by the time an X class flare is released, whereas the AR may continue to grow even 

after smaller class flares occur. Though it will be discussed further in Section 4.2, it should 

be noted that X-class flares with precursors show a similar increasing trend in LoS Area of 

Active Pixels that the other flare classes show, but the non-precursor cases show the 

decreasing trend and dominate the data for this parameter. Compared to the more consistent 

increase in Total Unsigned Flux both prior to and immediately following flare occurrence 

that the other flare classes show, X-class flares have much greater fluctuation in the 

parameter and often show an initial decrease after flare occurrence. This further suggests 

that an AR may be reaching maximum growth around the occurrence of an X-class flare. 
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For the Mean Vertical Current Helicity and Characteristic Twist Parameter, X-class flares 

show a large spike/increase immediately following occurrence that the other classes do not 

show, as well as a decreasing trend 12 hours prior to occurrence, while the other classes 

don't show any significant trend. This could be the result of X-class flares having much 

greater polarity in magnetic field direction prior to reconnection. As the field lines become 

more and more oppositely directly – specifically in the vertical direction – the vertical 

components of the magnetic field (Bz) and current (Jz), from which the parameters are 

calculated, decrease since the field lines are fighting each other. Following reconnection 

and flare occurrence, that fighting ceases and the lines are directed in the same direction, 

so the parameters increase. Since the smaller class flares don't require the same degree of 

polarity, the intense fluctuation seen for X-class flares doesn’t occur. 

Concerning (2), none of the SHARP parameters showed a significant time 

dependence for varying flare strengths. The Absolute Value of the Net Vertical Current 

Helicity did show a decreasing trend in all time intervals prior to flare occurrence for the 

B- and C-class flares; in the 6-, 12-, and 24-hour intervals for the M-class flares; and in the

12- and 24-hour intervals for the X-class flares. However, there was no concrete example

of time dependence in the sense of smaller magnitude flares (B- and C-class) having a 

particular trend solely at the shorter time intervals (3- and 6-hour) that the larger magnitude 

flares (M- and X-class) had solely at the longer time intervals (12- and 24-hour) as 

hypothesized. A possible explanation for this result is how much of the total energy built 

up within an AR is actually released by magnetic reconnection during a solar flare event. 

An AR that has been growing and evolving for a long period of time, such that enough 

energy for an X-class flare has built up within the magnetic field, may only produce a B-
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class flare when reconnection occurs depending on the particular configuration of the field 

or possibly the energy density distribution of the field over the AR. 

Figure 4. Epoch analysis for the 3-hour General subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 5. Epoch analysis for the 6-hour General subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the 
averages for all events in the associated flare class. Flares outside of three standard 
deviations from the average and outside of 70° heliographic longitude are excluded. 
SHARP data are acquired from JSOC using the Python notebook created by 
Glogowski and Bobra (2016) and flare start times are identified by SWPC (2019). 
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Figure 6. Epoch analysis for the 12-hour General subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 7. Epoch analysis for the 24-hour General subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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4.2. Precursor vs. Non-Precursor Subsets 

Table 7 summarizes the SHARP parameters that showed dissimilar/opposite trends 

between flares with and without a precursor(s) for varying flare classes and time intervals. 

In general, the differences in magnetic parameters of an AR between solar flare events that 

occur with a precursor(s) and those that occur without appear to be greater for X-class 

flares than the lower magnitude flares. Additionally, for X-class events, the differences are 

greater within the 3- and 6-hour epoch intervals than the 12-hour interval. The number and 

extent of dissimilar/opposite trends in the SHARP parameters for X-class flares with and 

without a precursor(s) drops from the 6-hour interval to the 12-hour interval. This suggests 

that the effect to which a precursor adjusts the magnetic conditions of an AR for a large 

flare event to occur drops in significance following a six-hour period between precursor 

and main flare occurrence. 

Across the three epoch intervals investigated for the Precursor and Non-Precursor 

subsets, the following parameters were the most common in showing differences in the 

trends leading up to and following solar flare events: 

• LoS Area of Active Pixels

• Total Unsigned Flux

• Mean Photospheric Excess Magnetic Energy Density

• Total Photospheric Magnetic Energy Density

• Total Unsigned Vertical Current Helicity

• Mean Shear Angle

• Percentage of Pixels with a Mean Shear Angle Greater than 45°.
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The first four parameters listed above all showed more continuous increase prior to and 

following flare occurrence for flares that had a precursor(s), while those without showed 

leveling off or a decreasing trend. This behavior is more clear and concrete with X-class 

flares, relating back to the idea of maximum AR growth presented in section 4.1. The data 

suggests that ARs that have an X-class flare occur with no precursor may have reached 

maximum growth, with a significant portion of the energy associated lost by the flare, while 

those that produce X-class flares with a precursor(s) could still be growing and evolving. 

The fact that the averaged data for X-class flares with precursors still showed an increasing 

trend in these parameters following occurrence supports the idea that a X-class flare could 

be a precursor for a larger X-class flare (Verma, 2018). 

Of particular interest with the Total Photospheric Magnetic Energy Density, across 

all time intervals the X-class flares that occurred without a precursor showed a sudden dip 

to a relative minimum approximately one hour prior to flare occurrence, while those with 

a precursor(s) showed continuous increase. Keeping in mind of course that at most only 

fifteen X-class flares were considered in the Non-Precursor subsets and one event with data 

substantially lower than the average at that one-hour prior mark could cause the dip that is 

seen, it is worth noting the feature as a potential signature for forecasting purposes. As 

more X-class events occur in the future, if the feature continues to be seen across a more 

statistically significant amount data, the sudden dip in Total Photospheric Magnetic Energy 

Density may prove to be an indicator for an X-class flare that occurs without a precursor. 
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Table 7. Summary of dissimilar/opposite trends in SHARP parameters between solar 
flares with and without a precursor(s) for varying flare class and time intervals. 

.

3-hour 6-hour 12-hour
Parameter B C M X B C M X B C M X 

Los Area of Active Pixels × × × 

Total Unsigned Flux × × × × × × × × 

Mean Inclination Angle 

Mean Value of the Total 
Field Gradient 

Mean Value of the Vertical 
Field Gradient 

Mean Value of the 
Horizontal Field Gradient 

Mean Vertical Current 
Density 

Total Unsigned Vertical 
Current × 

Characteristic Twist 
Parameter × 

Mean Vertical Current 
Helicity × 

Total Unsigned Vertical 
Current Helicity × × × × 

Absolute Value of the Net 
Vertical Current Helicity × 

Sum of the Absolute Value 
of the Net Vertical Currents 

Per Polarity 

Mean Photospheric Excess 
Energy Density × × × × × × × 

Total Photospheric 
Magnetic Energy Density × × × × × × × × × 

Mean Shear Angle × × × × × × × × × × × 

Percentage of Pixels with a 
Mean Shear Angle > 45° × × × × × × × × × 
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In regards to the Total Unsigned Vertical Current Helicity, across all time intervals 

the X-class flares that occurred with a precursor(s) showed a leveling off/continued 

increase following an initial spike after occurrence, whereas those without a precursor 

showed a decreasing trend following the initial spike after occurrence. This behavior is 

also likely connected to the concept of AR growth and evolution previously discussed. For 

X-class flares that occurred with a precursor(s), the Total Unsigned Vertical Current

Helicity remains elevated or continues to increase following occurrence because the AR is 

still evolving and the magnetic field is continuing to become more and more complex. For 

X-class flares without a precursor, following the explosive motions of the flare that create

the initial spike, the magnetic field begins to unravel and the AR starts to decay. 

Lastly, for the shear related parameters, all flare classes at all time intervals – with 

the exception of X-class flares at the 12-hour epoch interval – showed more significant 

decreasing in shear before and after flare occurrence for flares without a precursor(s), while 

those with often leveled out and even increased. This suggests that precursors do, in fact, 

enhance the shear over an AR, helping set up the conditions for magnetic reconnection 

necessary for the occurrence of a larger flare. 
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Figure 8. Epoch analysis for the 3-hour Non-Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 9. Epoch analysis for the 3-hour Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 10. Epoch analysis for the 6-hour Non-Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 11. Epoch analysis for the 6-hour Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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Figure 12. Epoch analysis for the 12-hour Non-Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).

44



www.manaraa.com

Figure 13. Epoch analysis for the 12-hour Precursor subset of flares. All data are 
normalized to the values at the start time of the flares. The plots display the averages 
for all events in the associated flare class. Flares outside of three standard deviations 
from the average and outside of 70° heliographic longitude are excluded. SHARP data 
are acquired from JSOC using the Python notebook created by Glogowski and 
Bobra (2016) and flare start times are identified by SWPC (2019).
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V. Conclusions

5.1 Summary 

The two primary points of investigation in this analysis were to identify and 

compare the trends of (1) differing flare classes for varying time intervals leading up to an 

event, and (2) of flares that occur with and without a precursor flare, with the ultimate goal 

of detecting potential signatures within the photospheric magnetic field of magnetic 

reconnection associated with solar flare occurrence. In reference to (1), the data showed no 

significant time dependence of the SHARP parameters for the differing flare strengths. 

Though there may be a relationship between the different flare classes and the amount of 

time it takes for enough energy to build up over the AR – on the order of 24 hours for X-

class flares and a couple hours for B- and C-class flares – the SHARP parameters do not 

show this same relationship. 

Regarding (2), there are clear differences in the magnetic conditions of an AR 

during solar flare events that occur with a precursor(s) versus those that occur without. In 

particular, SHARP parameters associated with an AR’s size, energy, and shear showed the 

most discernable differences in trends/behavior. For AR size and energy, all flare classes 

showed more continuous increase prior to and following flare occurrence for flares that 

had a precursor(s), while those without showed leveling off or a decreasing trend. This 

suggests that ARs that produce flares with precursors are continuing to evolve and 

appreciably more complex than those that produce a flare without a precursor. Of note, X-

class flares showed the most drastic difference in trends for flares with and without a 

precursor(s), with the implication that ARs that have an X-class flare occur with no 
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precursor may have reached maximum growth, while those that produce X-class flares with 

a precursor(s) could still be growing and evolving. For shear related parameters, the data 

indicated that for all flare classes shear across the AR is enhanced by the occurrence of a 

precursor, agreeing with the findings of Verma (2018). 

In a way, the analysis of the SHARP parameters for flares that occur with and 

without a precursor(s) is validation of the rule of thumb of flare persistence (Sawyer et al., 

1986). The data shows that a flare that occurs with a precursor is likely associated with a 

more complex and evolving AR, and that the precursor even helps set up the conditions for 

further flaring. Thus, an AR that has flared recently (the precursor) is likely to flare again 

(the main flare). Note that this interpretation does not take into account smaller flares that 

occur after a larger flare – i.e. an “aftershock” flare – which would also play into flare 

persistence. 

Though the data in this analysis provided insights on the conditions of the magnetic 

structures of an AR for varying flare classes and situations (precursor/no precursor) during 

solar flare events, ultimately none of the SHARP parameters showed a distinct signature 

of magnetic reconnection. As stated previously, magnetic reconnection during a solar flare 

event occurs higher in the solar atmosphere in the corona and chromosphere. With that, it 

is likely that any distinct signature of reconnection within the various magnetic parameters 

exists within coronal and chromospheric magnetic field data – which as of now cannot be 

directly measured – and the signature is subdued/lost at lower altitudes within the 

photospheric magnetic field. 
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5.2 Future Work 

The present study expanded upon the work of Whitney (2020) by separating the 

solar flares used in the analysis by not only maximum x-ray flux – i.e. flare class – but by 

the occurrence of a precursor flare. The additional separation/classification of flares based 

on commonalities of the flare event or AR helps to highlight the trends in magnetic 

parameters during these events that may be washed out when flares of different situations 

and with different magnetic conditions of the AR are averaged together. Furthermore, the 

additional classification within the analysis provides insights on the specific trends and 

behavior during events with a particular setup that can benefit forecasters who observe 

similar scenarios and conditions. Further break down of the solar flare database and 

analysis of the trends of different flaring scenarios will provide more insights for flare 

events of all different conditions. Other traits of the flare events or ARs that could be used 

for additional classification of the solar flare database include (Whitney, 2020): 

• Flares that occur near solar meridian versus those that occur near solar limbs –

requiring a correction of limb darkening effects such as that in Criscuoli et al.

(2017)

• Flares that occur with an associated CME versus those without such an event

• Flares whose duration is on the order of a few minutes versus those that last an hour

or more.

The analysis performed in this study looked at data that was at most 24 hours before

and 6 hours after a solar flare event. Examining the data throughout the entire evolution of 

the ARs would provide further insight into the magnetic field of an AR when it is and is 
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not flaring, which would improve the understanding of why an AR produces a solar flare. 

Furthermore, the SHARP is a patch that is large enough to capture the entire AR; further 

work toward narrowing the patch to minimize the amount of quiet photosphere counted 

should improve results. Along those lines, similar to Bobra and Couvidat (2015) and Mason 

and Hoeksema (2010), calculating the parameters based on pixels that are only along the 

PIL would isolate the data to the region of flaring within an AR, ignoring areas of weaker 

magnetic fields. Finally, it is uncertain exactly how the energy deposition from solar flares 

(particularly strong flares) into the solar atmosphere changes the atmospheric chemistry 

and opacity. Such changes may cause the Stokes parameters – used to calculate the vector 

magnetic components – to be perturbed. Future work investigating such perturbations 

would help to better understand the behavior of observed data following flare occurrence, 

as well as identify potential necessary corrections to the Stokes parameters in order to 

accurately calculate the vector magnetic components. 
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Appendix A 

Standard Deviation Ranges 

Figure 14. Standard deviation limits applied to the 3-hour General subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019).
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Figure 15. Standard deviation limits applied to the 6-hour General subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019)
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Figure 16. Standard deviation limits applied to the 12-hour General subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 17. Standard deviation limits applied to the 24-hour General subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 18. Standard deviation limits applied to the 3-hour Non-Precursor subset. 
Data outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 19. Standard deviation limits applied to the 3-hour Precursor subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 20. Standard deviation limits applied to the 6-hour Non-Precursor subset. 
Data outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 21. Standard deviation limits applied to the 6-hour Precursor subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Figure 22. Standard deviation limits applied to the 12-hour Non-Precursor subset. 
Data outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 

58



www.manaraa.com

Figure 23. Standard deviation limits applied to the 12-hour Precursor subset. Data 
outside these limits are disregarded for this study. Plotted lines represent three 
standard deviations from the average values. Colored lines represent different flare 
classes as denoted; the black line represents data for all flares. Values are normalized 
to flare start times, denoted by the vertical dashed line. SHARP data are acquired 
from JSOC using the Python notebook created by Glogowski and Bobra (2016) and 
are times are identified by SWPC (2019). 
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Appendix B 

Plots without X-class Data 

Figure 24. Epoch analysis for the 3-hour General subset of flares without X-class data 
plotted. All data are normalized to the values at the start time of the flares. The plots 
display the averages for all events in the associated flare class. Flares outside of three 
standard deviations from the average and outside of 70° heliographic longitude are 
excluded. SHARP data are acquired from JSOC using the Python notebook created 
by Glogowski and Bobra (2016) and flare start times are identified by SWPC . 
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Figure 25. Epoch analysis for the 6-hour General subset of flares without X-class data 
plotted. All data are normalized to the values at the start time of the flares. The plots 
display the averages for all events in the associated flare class. Flares outside of three 
standard deviations from the average and outside of 70° heliographic longitude are 
excluded. SHARP data are acquired from JSOC using the Python notebook created 
by Glogowski and Bobra (2016) and flare start times are identified by SWPC (2019). 
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Figure 26. Epoch analysis for the 12-hour General subset of flares without X-class 
data plotted. All data are normalized to the values at the start time of the flares. The 
plots display the averages for all events in the associated flare class. Flares outside of 
three standard deviations from the average and outside of 70° heliographic longitude 
are excluded. SHARP data are acquired from JSOC using the Python notebook 
created by Glogowski and Bobra (2016) and flare start times are identified by 
SWPC (2019). 
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Figure 27. Epoch analysis for the 24-hour General subset of flares without X-class 
data plotted. All data are normalized to the values at the start time of the flares. The 
plots display the averages for all events in the associated flare class. Flares outside of 
three standard deviations from the average and outside of 70° heliographic longitude 
are excluded. SHARP data are acquired from JSOC using the Python notebook 
created by Glogowski and Bobra (2016) and flare start times are identified by 
SWPC (2019). 
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Figure 28. Epoch analysis for the 3-hour Non-Precursor subset of flares without X-
class data plotted. All data are normalized to the values at the start time of the flares. 
The plots display the averages for all events in the associated flare class. Flares outside 
of three standard deviations from the average and outside of 70° heliographic 
longitude are excluded. SHARP data are acquired from JSOC using the Python 
notebook created by Glogowski and Bobra (2016) and flare start times are identified 
by SWPC (2019). 
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Figure 29. Epoch analysis for the 3-hour Precursor subset of flares without X-class 
data plotted. All data are normalized to the values at the start time of the flares. The 
plots display the averages for all events in the associated flare class. Flares outside of 
three standard deviations from the average and outside of 70° heliographic longitude 
are excluded. SHARP data are acquired from JSOC using the Python notebook 
created by Glogowski and Bobra (2016) and flare start times are identified by 
SWPC (2019). 
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Figure 30. Epoch analysis for the 6-hour Non-Precursor subset of flares without X-
class data plotted. All data are normalized to the values at the start time of the flares. 
The plots display the averages for all events in the associated flare class. Flares outside 
of three standard deviations from the average and outside of 70° heliographic 
longitude are excluded. SHARP data are acquired from JSOC using the Python 
notebook created by Glogowski and Bobra (2016) and flare start times are identified 
by SWPC (2019). 
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Figure 31. Epoch analysis for the 6-hour Precursor subset of flares without X-class 
data plotted. All data are normalized to the values at the start time of the flares. The 
plots display the averages for all events in the associated flare class. Flares outside of 
three standard deviations from the average and outside of 70° heliographic longitude 
are excluded. SHARP data are acquired from JSOC using the Python notebook 
created by Glogowski and Bobra (2016) and flare start times are identified by 
SWPC (2019). 
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Figure 32. Epoch analysis for the 12-hour Non-Precursor subset of flares without X-
class data plotted. All data are normalized to the values at the start time of the flares. 
The plots display the averages for all events in the associated flare class. Flares outside 
of three standard deviations from the average and outside of 70° heliographic 
longitude are excluded. SHARP data are acquired from JSOC using the Python 
notebook created by Glogowski and Bobra (2016) and flare start times are identified 
by SWPC (2019). 
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Figure 33. Epoch analysis for the 12-hour Precursor subset of flares without X-class 
data plotted. All data are normalized to the values at the start time of the flares. The 
plots display the averages for all events in the associated flare class. Flares outside of 
three standard deviations from the average and outside of 70° heliographic longitude 
are excluded. SHARP data are acquired from JSOC using the Python notebook 
created by Glogowski and Bobra (2016) and flare start times are identified by 
SWPC (2019). 
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Forecasting of solar flares remains a challenge due to the limited understanding of the triggering mechanisms associated with
magnetic reconnection, the primary physical phenomenon connected to these events. Consequently, methods continue to rely on the
climatology of solar flare events as opposed to the underlying physics principles. Models of magnetic reconnection in the solar
atmosphere places the null point of the reconnection within the corona. Though as of now the coronal magnetic field cannot be
directly measured, the field is tied to the photospheric magnetic field, which can be. This study utilized data from the Solar
Dynamics Observatory Helioseismic and Magnetic Imager and Space Weather HMI Active Region Patches to analyze full
vector-field component data of the photospheric magnetic field during solar flare events within a near decade long dataset. Analysis
of the data was used to compare the trends of differing flare classes for varying time intervals leading up to an event, as well as the
trends of flares that occur with and without a precursor flare, in order to discern signatures of the physical mechanisms involved.
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